Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia.

نویسندگان

  • Lukas Bütikofer
  • Andreas Zurlinden
  • Marc F Bolliger
  • Beat Kunz
  • Peter Sonderegger
چکیده

Etiology and pathogenesis of sarcopenia, the progressive decline in skeletal muscle mass and strength that occurs with aging, are still poorly understood. We recently found that overexpression of the neural serine protease neurotrypsin in motoneurons resulted in the degeneration of their neuromuscular junctions (NMJ) within days. Therefore, we wondered whether neurotrypsin-dependent NMJ degeneration also affected the structure and function of the skeletal muscles. Using histological and functional analyses of neurotrypsin-overexpressing and neurotrypsin-deficient mice, we found that overexpression of neurotrypsin in motoneurons installed the full sarcopenia phenotype in young adult mice. Characteristic muscular alterations included a reduced number of muscle fibers, increased heterogeneity of fiber thickness, more centralized nuclei, fiber-type grouping, and an increased proportion of type I fibers. As in age-dependent sarcopenia, excessive fragmentation of the NMJ accompanied the muscular alterations. These results suggested the destabilization of the NMJ through proteolytic cleavage of agrin at the onset of a pathogenic pathway ending in sarcopenia. Studies of neurotrypsin-deficient and agrin-overexpressing mice revealed that old-age sarcopenia also develops without neurotrypsin and is not prevented by elevated levels of agrin. Our results define neurotrypsin- and age-dependent sarcopenia as the common final outcome of 2 etiologically distinct entities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction.

During the initial stage of neuromuscular junction (NMJ) formation, nerve-derived agrin cooperates with muscle-autonomous mechanisms in the organization and stabilization of a plaque-like postsynaptic specialization at the site of nerve-muscle contact. Subsequent NMJ maturation to the characteristic pretzel-like appearance requires extensive structural reorganization. We found that the progress...

متن کامل

Injection of a Soluble Fragment of Neural Agrin (NT-1654) Considerably Improves the Muscle Pathology Caused by the Disassembly of the Neuromuscular Junction

Treatment of neuromuscular diseases is still an unsolved problem. Evidence over the last years strongly indicates the involvement of malformation and dysfunction of neuromuscular junctions in the development of such medical conditions. Stabilization of NMJs thus seems to be a promising approach to attenuate the disease progression of muscle wasting diseases. An important pathway for the formati...

متن کامل

Site Specific Cleavage Mediated by MMPs Regulates Function of Agrin

BACKGROUND Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles...

متن کامل

Degeneration of Neuromuscular Junction in Age and Dystrophy

Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Conse...

متن کامل

Elevated levels of a C-terminal agrin fragment identifies a new subset of sarcopenia patients

Sarcopenia is a recently defined medical condition described as age-associated loss of skeletal muscle mass and function. Recently, a transgenic mouse model was described linking dispersal of the neuromuscular junction caused by elevated agrin degradation to the rapid onset of sarcopenia. These mice show a significant elevation of serum levels of a C-terminal agrin fragment (CAF) compared to wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2011